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On the statistics of K-distributed noise 

E Jakeman 
Royal Signals and Radar Establishment, Malvern, Worcestershire, UK 

Received 25 January 1979, in final form 18 May 1979 

Abstract. When the number of steps in a random walk varies, the distribution of the 
resultant vector components in the limit of large mean step number may be non-Gaussian. 
In this paper the statistics and temporal correlation properties of one class of such 
non-Gaussian limit distributions are derived and some of its potential applications are 
reviewed briefly. 

1. Introduction 

The class of modified Bessel function or K distributions 

has recently been found to provide an excellent model for the amplitude statistics of the 
scattered radiation in a wide variety of,experiments involving scattering from turbulent 
media (Jakeman and Pusey 1978). It has been suggested that this may be because they 
are limit distributions in a certain type of random walk problem. It is well known that if 
the number of steps in a random walk is increased without limit then the components of 
the resultant vector have a Gaussian distribution (the central limit theorem). It is less 
well known that if the number of steps is itself a statistical variable then this result does 
not necessarily hold. Although there is a vast literature devoted to the central limit 
theorem and the conditions governing convergence to Gaussian statistics, little consi- 
deration appears to have been given to the possibility of non-Gaussian limit dis- 
tributions arising from number fluctuations. Equation (1) defines such a class of 
distributions, generated by negative binomial number fluctuations. In this paper a 
discussion of the consequences of the negative binomial assumption will be given. 
Some higher-order joint statistics of the associated limit distributions will be derived 
and the properties of two related distributions will also be discussed. Number fluctua- 
tions in the random walk problem will be treated here as a subject of interest in its own 
right and no attempt will be made in the present work to justify the basic model for the 
number fluctuation distribution. However, comparisons with experimental data will be 
given to demonstrate the relevance and potential range of applications of limit 
distributions related to the class (1). 

The negative binomial distributions 
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form a two-parameter class, each member of which is characterised by its mean fi and 
normalised variance a-’ +N-’, The most familiar member of the class is the geometric 
distribution, when a = 1, which, for example, describes the photon statistics of thermal 
(incoherent) light. The parameter cy appearing in (2) can in fact be regarded as a 
measure of the degree of bunching in a time sequence of events in which N counts the 
number of events in a fixed small sample time. These distributions are often introduced 
as models for variable mean Poisson processes but they assume a more important and 
fundamental role in queueing theory and more particularly in population statistics (e.g. 
Bartlett 1966) where they occur as equilibrium distributions in the birth-death- 
immigration process. Various theoretical treatments of this latter type of process exist 
in the literature and in 0 2 a rate-equation approach will be used to derive a number of 
results relevant to the random walk problem. 

In § 3 limit distributions associated with negative binomial number fluctuations will 
be derived and discussed and results on some useful related distributions will be 
considered. In 0 4 comparisons with presently available experimental data will be 
given. A general discussion and summary are given in 9 5 .  

2. Number fluctuations 

In this section the theory of negative binomial number fluctuations will be developed 
using a rate-equation approach to solve the birth-death-immigration problem. 

The transitions between adjacent population levels in a population with birth rate A ,  
death rate p and immigration rate v are illustrated in figure 1. Immigration is 
somewhat analogous to spontaneous emission, being independent of population, and 
with the applications of 04 in mind it is, perhaps, more appropriate to call this 
contribution to the rate equation ‘spontaneous creation’. It will be assumed throughout 
that births, deaths and spontaneous creations occur as uncorrelated random events. The 
rate equation for the process may thus be written 

where PN( t )  is the probability of finding a population of N individuals at time t. A 

T I ” ”  -(“U16 AN+1)& 

+-TN [AW-l)+uI pN., -!JNP, 

4 N-1 

Figure 1. Population transitions leading to negative binomial number fluctuations. 
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partial differential equation for the generating function 
00 

Q(z, t ) = ( ( l - ~ ) ~ ) =  ( ~ - z ) ~ P N ( c )  
N=O 

may be deduced from (3) without difficulty: 

aQ 
% = z [ - p  + A ( l - z ) ] - - v z Q .  
at  82 

(4) 

If it is assumed that M individuals are present initially then equation ( 5 )  must be solved 
subject to the boundary conditions 

Q(0, t )  = 1, Q(z ; 0) = (1 - z ) ~ .  (6) 

The first of these conditions is just an expression of the unit normalisation of P N ( f )  
whilst the second results from the initial condition PN(0)  = SNM. The transient solution 
for the population statistics is (e.g. Bartlett 1966) 

where 

O ( t )  = exp[(A -p ) t ] .  

An equilibrium distribution for large times exists if the death rate p is greater than the 
birth rate A .  Setting 6 = 0 in equation (7 )  gives 

Q ( z ,  a) = (1 +T?.z/(u)-O 

where 

T?. = v / ( p  - A ), a = v/A. 

This is the generating function for the class of negative binomia jistributions defined by 
equation (2) of the last section. The normalised higher-factorial moments may be 
evaluated from (8) by repeatedly differentiating with respect to z and then setting z = 0: 

( N ( N  - 1) . . . ( N  - r + l))/N‘ = ‘fr’ ( 1 + 4). (9) 
n=O a 

In the equilibrium regime all the higher-order temporal coherence properties of the 
population number fluctuations can in principle be calculated from equation (3) via the 
transient solution (7). For example, the joint distribution PMN(O, t )  of finding M 
individuals present at time zero and N at time t may be expressed in the form 

P M N ( 0 ,  t )  = PMPmf)N(f) (10) 

where PM is the equilibrium probability of finding M individuals present, given by 
equations (2) and (8), and P(M)N( t )  is the probability of finding N individuals present at 
time t conditional on the presence of M at time zero as given by the transient solution 
(7). The joint generating function 
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can be evaluated analytically and expressed in terms of 6, N and I (equations (7) and 
(8)) as 

Q(z, 0; z ' ,  t) =[(1 +N.z/cY)(~ +Nz'/c )-zz'3(1 +N/(Y)N/(Y]- , (12) 

and this result readily yields the bilinear moment (correlation) function of the number 
fluctuations 

3. Limit distributions 

The results of the last section will now be used to evaluate the limit distributions 
generated by a random walk with variable step number in the limit of large mean step 
number. In order to make the calculations explicit and to facilitate comparison with 
experimental data, only the two-dimensional walk will be considered. No additional 
complications appear to arise in the case of other dimensionalities. 

3.1. Single-fold statistics 

Consider the N-step two-dimensional random walk 

N 

j = l  
s(t) = 1 aj ( t )  exp(idi(t)) = A( t )  exp(i@(t)) 

where (a j ( t ) }  and {4i(t)} are statistically independent sets of random variables describ- 
ing the length and orientation, respectively, of the steps as a function of time. It will be 
assumed that different members of each set are statistically identical but independent, 
and that the ( d j ( t ) }  are uniformly distributed over 277 radians. The phase @(t) of the 
resultant vector will then also be uniformly distributed, and assuming first that N is 
fixed, its characteristic function can be expressed in terms of the zeroth-order Bessel 
function 

Cdu)  = (exp[i(ul81+ U Z % ' Z ) ~ )  = = ( J O W ) )  (15) 

where the subscripts indicate real and imaginary parts and U = /U /  = (U: + ~ 2 ) " ~ .  In 
order to derive the asymptotic distributionfor the case of large N it is convenient to 
renormahe the step length U by a factor JN and examine the limit of the expression 
( Jo (~a / JN) )N as N tends to infinity. It is not difficult to show that, whatever the 
step-length distribution, 

corresponding to the Rayleigh distribution 

p(A) = 2(A/(A2)) exp(-Az/(A2)). 

Defining the intensity by 

I = A ~ ,  (18) 
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equation (17)  is easily converted into the intensity fluctuation distribution 

P ( 1 )  = ( l / ( O )  eXP(-1/(0) (19)  

(lr)/(I)r = r ! .  (20)  

with normalised moments 
n [ r l  = 

This result expresses the fact that in the large-N limit the real and imaginary parts of the 
vector d are zero-mean, independent Gaussian variables as predicted by the central 
limit theorem. A corollary of this result is that if the step lengths {a j }  in the random walk 
(14)  are Rayleigh distributed then so is the resultant amplitude A (but with scaled mean 
square (A2) = N(a2))  whatever the value ofN. The distribution (17)  is thus stable with 
respect to the convolution ( 1 5 ) .  

Now suppose that N is itself a statistical variable, independent of the {a j }  and {q+} 
and distributed according to equation (2) .  Averaging equa2on ( 1 5 )  over the fluctua- 
tions in N and renormalising the step lengths by a factor J N  leads to 

(21)  Cfl(U) = [ l  + ( N / a ) ( l  - (Jo(ua/JE)))]-" .  
The associated limit distributions can easily be derived: 

lim ~ f i ( u )  = [ I  + u2(a2) /4c  1- 
N+m 

corresponding to the K distributions 

with b = 2 ( ~ r / ( A ~ ) ) " ~  and normalised intensity moments (cf equation (20) )  

nrr l  = r ! r ( r  + a ) / a  'm). (24)  
Like equation (17)  the result (23)  holds whatever the properties of the individualsteps. It 
is interesting that if the step lengths {a j }  appearing in equation (14)  are K-distributed 
then so is the resulting amplitude for any fixed N. The class (23)  is, in fact, infinitely 
divisible with respect to the convolution ( 1 5 ) :  a useful analytical property which derives 
in part from the infinite divisibility of the underlying negative binomial distribution. 
Unlike the Rayleigh distribution (17) ,  however, K distributions are not stable, because 
increasing the number of K-distributed steps in the random walk (16)  increases the 
order of the distribution (23)  of the resultant amplitude as well as its mean square 
(Jakeman and Pusey 1978). The asymptotic behaviour of (23)  and (24)  with large a 
should thus be equivalent to that obtained by taking N large in the usual random walk 
problem. This is indeed the case, for as (Y tends to infinity these two formulae reduce to 
equations (17)  and (20)  predicted by the central limit theorem. 

The functions (23)  have rarely figured in the literature as probability distributions 
(Nakagami and Ota 1957, Beckmann 1967) but are commonly used as model structure 
(correlation) functions following the suggestion of Tatarski (1961).  The normalised 
moments (24) provide a useful basis for comparison with experiment as they depend 
only on the single parameter a. The second moment 

n [ 2 3 = 2 ( 1 + a - 1 )  (25)  
is a convenient measure of the deviation from Gaussian statistics against which the 
higher moments can be plotted. Figure 2 shows moments plotted in this way for 
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Figure 2. Higher-order normalised intensity moments as a function of the second moment 
for various distributions: broken curves, lognormal; open circles, Weibull; dotted curves, 
gamma; full curves, K. 

comparison with other non-Gaussian distributions. It can be shown that the normalised 
moments of K distributions always lie between those of the Rayleigh and lognormal 
distributions with the same values of nrl l  and nr2] (Jakeman and Pusey 1976) .  Clearly 
the Weibull distributions 

( 2 6 )  p ( A )  = 2@bA(bA2)'-' exp[- (bA2)'] 

with b = r(l +@- ' ) / (A2)  and normalised intensity moments 

n [ ' ] = r ( l + r / @ ) / r ' ( l  +@-I) 

are close to K distributions for a wide range of second moment values. Indeed they are 
identical for second moments of two (a + 00, @ = 1 )  and six (a = 8, @ = i). However, 
their analytical properties are less attractive than those of K distributions (in particular 
rhey are not infinitely divisible) and it is not clear how the theory of their higher-order 
joint distributions should be formulated.. It will now be shown that in the case of K 
distributions these can be derived on the basis of the rate equation ( 3 ) .  

3.2. Correlation properties 

Consider first the correlation function ( %(t)%(t'))  with t' = t + T and T > 0. Out of N 
steps present in the walk at the initial time t, N, will survive to the later time t ' ,  N - N, 
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steps will disappear and N ’ -  N, new steps will appear, where N’ is the number of steps 
at time r ‘ .  The correlation function of the complex amplitude can thus be expressed in 
the form 

( g ( t ) g * ( t ’ ) ) = ( ( z  S a, ei+s+x d a d  a: e’+:+xe-i+k n )) (28) 

where s labels the members of the original population which survive to time t’, d labels 
those which die and n the new members of the population which appear during the 
period 7. Since the sets (4,)) {&} and {&} are statistically independent of each other 
and {+i} are uniformly distributed, (28) immediately reduces to 

(g(t)%*(t’))  = (Ns)(a(t)a(t’))(exp[i(4(t) - 4(t’Nl) (29) 
and since the original population is depleted by a statistically random (Bernoulli) death 
process the normalised first-order correlation function may finally be written as 

(30) (1) g (7) = ~xP(-CL.)(~(O)~(.~))(~XP[~(~(O) - 4(.r))I>/(a2). 
The second-order or intensity correlation function (I(t)I(r’))  can be derived using a 

similar approach. A straightforward calculation gives the normalised form 

where g(l)(T) is defined by equation (30) and e(7) by equation (7). Formulae (30) and 
(31) are exact consequences of the negative binomial assumption. In order to generate 
the correlation properties associated with the distributions (23) (i.e. with K-distributed 
noise), 15 must be increased without limit as in the derivation of equation (22) from 
equation (21). The first-order correlation function is unaffected by this procedure, 
being independent of f l  but the intensity correlation function becomes 

which is identical to the result (25) for the second moment when 7 = 0. The relation (32) 
replaces the familiar factorisation theorem for a complex Gaussian field (the Siegert 
relation) and reduces to it only in the limit of large a. Both the lifetime of the steps and 
their cross-section fluctuations enter into formula (30) for the field correlation function, 
but orientational (phase) fluctuations may often dominate the time dependence of this 
quantity. Two types of contribution to the second-order correlation function (32) can 
be identified: a number fluctuation term O ( 7 )  and an ‘interference’ term proportional to 
lg(1’(7))2. The time dependence of these two contributions will usually be quite different. 

The higher-order joint distribution properties of the resultant of a random walk with 
variable step number may also be calculated by following a procedure similar to that 
leading to equation (28). Thus the characteristic function may be reduced as follows: 

where 
A = (exp[i(aul cos 4 +auz sin 4 +a’ul cos 4’+a’uz sin 4’13, 
B = (exp[i(aul cos 4 + au2 sin 413, 
D = (exp[i(a’ul cos +’+ a’uz sin &’)I). 

(336) 

(33c) 

( 3 3 4  
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The averages in (33) are carried out over the step lengths and orientations, subscripts 
label real and imaginary parts and the primed and unprimed parameters refer to the 
later and earlier times as before. Evaluation of equation (33a) appears to be difficult 
except in certain limiting cases and warrants further investigation. 

3.3. Related distributions 

As a first example, consider the incoherent random walk corresponding to equation 
(14): 

N 

j = 1  
I ( t ) =  1 &t) .  (34) 

The Laplace transform of the probability distribution of this quantity is given by 

QN(s) = (exp(-SI)) = (exp(-sa2))N (35) 
and the associated limit distribution can be derived in the usual way by dividing a by JN 
(so that ( I )  = (a2)) and taking N large: 

The intensity (34) is therefore constant in this limit. On the other hand, if N varies 
according t o t h e  distribution (2 ) ,  the average form of equation (35) after scaling a 
by a factor JN is 

Q N ( s )  = [I +(N/c t ) (~  -(exp(-sa2/N)))]-" (37) 
and the Laplace transform of the associated limit distribution is given by 

Inverse Laplace transformation of this formula generates the class of gamma dis- 
tributions 

P ( I )  = ct (CYI/W-' exp(-ctI//(i))/(i)r(ct), (39) 

which is just the continuous analogue of the discrete negative binomial class ( 2 ) .  These 
distributions are discussed extensively in the literature. When CY = i n  and (I) = 20 the 
intensity is said to be a chi-square variate with n degrees of freedom and if n is integral it 
can be expressed as the sum of the squares of n Gaussian variables. The class (39) has 
often been proposed as a model for non-Gaussian statistics and has also appeared in 
studies of infinite divisibility (Gnedenko and Kolomogorov 1954). The term m 
distribution was coined for the sub-class n 5 1 in an early detailed analysis of their 
properties (Nakagami 1943). The normalised moments of (39) are given by 

n I r l  = ( I r ) / ( I ) '  = r(r +a)/ 'r( U )  (40) 

and are smaller by a factor r !  than those of the corresponding K distributions (figure 2 ) .  
In fact, it is possible to show that a K-distributed variable can be factored into the 
product of two independent gamma variates (Nakagami and Ota 19-57), although this 
simple factorisation cannot be extended to the correlation properties of K-distributed 
noise generated through the rate equation (3). 
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The joint statistics of a gamma variate can be derived from (34) using the rate 
equation (3) and the procedure of the last section. For example, the joint Laplace 
transform Q(s, s') = (exp[- (s1 ( t )  + s ' I ( t ' ) ) ] )  and corresponding distribution are given 
by 

a ( s , s ' ) = [ ( l  + ~ ( ~ ) / ( Y ) ( ~ + S ' ( ~ ) / C ~ ) - ~ S S ' ( ~ ) ~  ( T I /  '1- , (41)  

where 
first-order intensity correlation function is 

is a modified Bessel function of the first kind of order a - 1. The normalised 

(43) 

which may be obtained directly from equation (32) by neglecting the interference term 
proportional to lg(*)(T)J2. 

As a second example of distributions related to class ( l ) ,  the statistics of K -  
distributed noise plus a constant amplitude component will be considered briefly. In the 
case of coherent addition of K-distributed noise with a randomly phased but constant 
amplitude 'step' (homodyning), the characteristic function of the limit distribution from 
equation (22)  is (ao is the constant amplitude component) 

(11')/(1)2 = 1 + 8 ( T ) / f f ,  

Inversion of this formula is difficult but the moments can be expressed as finite sums: 

where 

x = ( a 2 > / a i  (456)  
is the ratio of the mean intensity of the K-distributed noise to the intensity of the 
constant amplitude component. Thus, for example, 

(A*>=a ; ( l+x) ,  

n(2)  = [ 1 + 4x + 2x2(1 + a - I ) ] / ( l +  x)2 .  
(46)  

(47) 

Plots of formula (47) for the second moment against x take an interesting form if 
a = X / E  with E constant. Curves for various values of E are shown in figure 3, and will be 
discussed futher in the next section. Note, however, that n(') rises from unity at x = 0 to 
a maximum value of ( e 2  + 4~ + 2 ) / ( 2 e  + 1) at x = ( 1  + € ) / E ,  then decreases asymptotic- 
ally to 2 as x becomes large. 

4. Comparison with experiment 

The class of distributions (1) was originally proposed as a model for non-Gaussian 
microwave sea echo (Jakeman and Pusey 1976). When a radar illuminates a large area 
of the sea it is usually found that the probability distribution of the envelope of the 
return signal can be approximated by the Rayleigh distribution (17). This is a 
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Figure 3. Second normalised intensity moment of homodyned K-distributed noise (see 
equation (47) of text). 

consequence of the central limit theorem since the signal can be thought of as being the 
vector sum, equation (14), of randomly phased components from a large number of 
independent ‘scatterers’. However, by using a narrow beam-divergence and short 
pulse-length, it is possible to illuminate areas of the sea of linear dimensions compar- 
able with the longer wavelengths of the sea surface. Under these conditions large 
deviations from Rayleigh statistics are often found and the original idea was to 
represent the scattered radiation by equation (14) with N relatively small. The 
expression (15) for the generating function then represents a formal solution of the 
scattering problem exhibiting the correct dependence on N which is itself expected to 
be proportional to the illuminated area. For modelling purposes a simple analytical 
form for the amplitude statistics is required, however, and this necessitates a dis- 
tribution for the {a j }  for which the convolution (15) can be inverted. As already 
mentioned in § 3.1, K distributions fulfil this requirement. They aJso have moments 
which lie between those of the Rayleigh distribution and those of the lognormal 
distribution with the same mean and variance-a property shared with experimental 
sea-echo measurements. Bearing in mind the ad hoc assumptions of the model, the 
agreement between experimental data and K-distributed noise shown in figure 4 is 
surprisingly good. Recent analysis (Jakeman and Pusey 1977) of the area dependence 
of the statistics has not, however, confirmed the tenets of the original model, which 
clearly predicts that (for fixed N )  

nr2’ = 2(1+ l/aN) (48) 
where a is the order of the K distributions characterising the {a,}. Thus if the 
illuminated area is doubled the deviation from the Gaussian value of two should be 
halved. Such behaviour is not supported by the experimental data, which indeed show 
the reverse trend in some cases. This is almost certainly due to instrumental difficulties 
such as system noise, which affects the accuracy of the measured amplitude distribution 
for small amplitude fluctuations and hence the normalisation of the lower moments. 
However, if, as seems likely, the K-distributed nature of the amplitude fluctuations 
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-12L 

Figure 4. Experimental sea-echo data (0) compared with K-distributed noise (full curve, 
a= 0.5) (Jakeman and Pusey 1977). 

derives from spatial bunching of the scatterers on the sea surface rather than from the 
properties of the individual scattering centres (i.e. the {a j } )  then the area dependence 
implied by equation (48) will only arise when the illuminated area exceeds the 
characteristic bunching length. 

Comparison of experimental data with the higher moments of the intensity fluctua- 
tion distribution (figure 2) affords a more sensitive measure of goodness of fit than 
comparison with the distributions themselves shown in figure 4. Because of normalisa- 
tion difficulties, mentioned earlier, large uncertainties appear in high-order moments 
calculated from the sea-echo data. Measurements of optical frequency scintillation 
using photon counting techniques, on the other hand, are completely free from the 
spurious noise and nonlinearities with bedevil both detection at microwave frequencies 
and analogue processing methods (Cummins and Pike 1974) and it is therefore data 
from light scattering experiments which provide the most convincing evidence in 
support of K-distributed noise. The first experiments of this kind, specifically designed 
to investigate enhanced non-Gaussian fluctuations, measured the scintillation of laser 
light scattered into the Fraunhofer region by a thin layer of nematic liquid crystal in 
turbulent motion (Pusey and Jakeman 1975). The system is discussed at length in 
earlier papers but, briefly, consists of a 25 km thick layer of the nematic liquid crystal 
MBBA contained between two glass slides. The initially clear, aligned state is driven 
into turbulent motion by the application of a potential difference of 15 or 20 volts across 
the layer. This perturbs the direction of the local optic axis and causes strong scattering 
of incident light, the sample taking on the appearance of ground glass. In this ’dynamic 
scattering’ mode the layer behaves as a deep random phase screen, introducing into an 
incident plane-wave path differences of the order of an optical wavelength, which vary 
randomly in time and with position in the illuminated area. When the latter is only the 
order of 10 km or so, large non-Gaussian fluctuations in the scattered intensity occur in 
the Fraunhofer region. The data taken in these experiments were originally interpreted 
in terms of a fixed-N, facet model which gave only moderate agreement with the 
measured higher-order single-fold statistical properties. Comparison with K -dis- 
tributed noise was made only recently and is reproduced in figure 5 .  Agreement is 
excellent even for the fifth normalised moment. 

The number fluctuation model described in the preceding sections also makes 
predictions concerning the second-order or intensity correlation function, namely 
equation (32). Two complications prevent direct comparison of this formula with data 
on the liquid crystal system, however. Firstly, the deviation of the second normalised 
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Figure 5. Liquid crystal scattering data compared with the moments of K-distributed noise 
(Jakeman and Pusey 1978). 

intensity moment from the Gaussian value of two was found experimentally to be 
inversely proportional to the illuminated area, suggesting that this was still much larger 
than the outer scale (bunching length) of the turbulence. Secondly, although the 
measured correlation function exhibited decay on two time scales, the size of the two 
contributions was estimated by cross-correlation of the output between two spatially 
separated detectors (Pusey and Jakeman 1975). Although some qualitative predictions 
of the effect of a spatial distribution of scatterers on the statistics can be made, these are 
not included in equation (32). Moreover, this formula is restricted to detection at a 
single space point. 

More recent optical scintillation experiments using photon counting techniques 
have concentrated on Fresnel region effects. Laboratory experiments have investigated 
the statistical properties of light scattered by strongly turbulent layers of air and water as 
a function of propagation distance beyond the scattering region (Parry et a1 1977, Parry 
and Gray 1979). Outdoor experiments have included the measurement of scintillation 
effects which occur when a laser beam propagates through an extended region of 
turbulence in the atmosphere (Parry and Pusey 1979) and also measurements of the 
twinkling of starlight (Jakeman er a1 1978, Parry and Walker 1979). In both the layer 
and extended region experiments the normalised second intensity moment varies with 
propagation distance in a manner rather similar to figure 3. It first increases from unity 
at short propagation distances (where there are only phase fluctuations) to a maximum 
typically greater than the Gaussian value of two at a distance possibly corresponding to 
the focussing length of the larger-scale fluctuations in refractive index. Thereafter a 
decrease towards two at large propagation distances is observed, as interference 
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between contributions from many independent scatterers begins to dominate the statis- 
tics. K distributions seem to provide a good fit to the measured intensity statistics in the 
peak region and beyond. Figure 6 shows various data taken in this region from the 
above-mentioned systems compared with the moments of K-distributed noise. Preli- 
minary results only are given for atmospheric propagation measurements. Data taken 
in a more recent comprehensive set of experiments confirm the significance of K 
distributions in the context of propagation through extended regions of turbulent 
media, but this will be published elsewhere (Parry and Pusey 1979). Although intensity 
fluctuations in the region preceding the focussing peak are not found to be K- 
distributed, certain definite trends were observed in the layer scattering systems. These 
enabled the detection position in the stellar scintillation measurements to be 
established as being in a sub-region immediately preceding the peak. Here the 
fluctuations appear to lie between lognormal and K, whilst very close to the scattering 
layer, the higher-order normalised intensity moments appear to increase faster than 
lognormal. Between these two sub-regions lies a short range of propagation paths for 
which lognormal statistics were observed. These observations, together with the close 
resemblance between the measured focussing curve and figure 3, suggest that the 
coherent addition of K-distributed noise and a constant amplitude component might 
provide a useful model for the statistics of radiation scattered by a turbulent layer over 
the whole range of propagation distances from the scatterer to the far field. Figure 7 
compares experimental data obtained when a laser beam is scattered by a turbulent 
layer of air with the moments defined by equation (45). The two parameters x and a are 
obtained by fitting the second and third normalised intensity moments and the 
suitability of the model is measured by the agreement between experiment and theory 
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Figure 6. Data from various turbulence scattering experiments compared with the moments 
of K-distributed noise (Parry ef a1 1977, together with additional unpublished data). 
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Figure 7. Normalised moments of the measured intensity fluctuation distribution of laser 
light scattered by a turbulent layer of air (0) plotted as a function of propagation distance: 
comparison with homodyned K-distributed noise ( x )  (Parry et al 1977, together with 
additional unpublished data; the dotted lines are drawn as an aid to data identification). 

for the fourth, fifth and sixth moments. Figure 8 shows log plots of x and a as a function 
of propagation distance and reveals an extensive region of linear behaviour for both 
these quantities. Analysis of data taken in experiments on a turbulent layer of water in 
terms of the same statistical model gives almost identical plots, showing linear regions 
with the same slope. This suggests that there may be some underlying physical basis for 
using homodyned K distributions to describe intensity fluctuations in the Fresnel region 
of a turbulent scattering layer. Further evidence in support of this conjecture is 
provided by the knowledge that Rice statistics (homodyned Gaussian noise) is predicted 
theoretically for intensity fluctuations in the Fresnel region far from a random phase 
screen characterised by a single length scale (Gaussian phase correlation function). A 
discussion of this problem is presented elsewhere (Jakeman and McWhirter 1977). 
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Figure 8. Parameters x (0) and CY ( x ) used in equation (45) to obtain figure 7 and to fit some 
additional data on the same scattering system, plotted as a function of propagation distance. 

As a final application of the results given in 0 3, a comparison is shown in figure 9 of 
data on the intensity statistics of white light scattered by a turbulent layer of air and the 
gamma distributions (39). These measurements were not made under identical condi- 
tions to the laser scattering experiments so that confirmation of the ratio between the 
normalised moments (24) and (40) is not possible. Moreover, the bandwidth of the 
white light was unfortunately insufficient to eliminate interference effects completely, 
i.e. the scattering process was not fully incoherent. Nevertheless the data compare 
favourably with the normalised moments (40), which is encouraging if not conclusive. 
As in the case of figure 6 ,  only data from the focussing peak in the second-moment plot 
and beyond are included. In order to characterise the statistics for all propagation 
distances in the white light experiments, the sum of a constant amplitude component 
plus gamma-distributed noise would seem appropriate by analogy with the coherent 
illumination case. 

5. Discussion 

The aim of this paper has been to show that the inclusion of step number fluctuations in 
the random walk problem can lead to new and useful classes of limit distribution. An 
in-depth study of the general problem has not been attempted but some simple limiting 
statistical properties associated with negative binomial number fluctuations have been 
calculated to demonstrate the interesting possibilities of this type of random walk. 
Quite apart from investigations of limit distributions arising from other kinds of number 
fluctuations, much further work is required to establish, for K -distributed noise, the full 
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Figure 9. Data on the statistics of white light scattered by a turbulent layer of air compared 
with the moments of gamma-distributed noise (Parry et a1 1977, together with additional 
unpublished data). 

range of statistical properties (distributions of integrated intensity, level crossings, 
maxima, etc) presently available in the case of the more familiar Gaussian noise. The 
choice of model for the present study has been governed by the requirements of 
mathematical tractability and physical relevance, and these two points warrant some 
further comment. 

Taking first the question of mathematical tractability, three considerations have 
determined the course of the work: (i) the existence of a closed form for the limit 
distributions in terms of familiar tabulated mathematical functions, (ii) the infinite 
divisibility of these limit distributions and (iii) the ability to calculate higher-order 
(joint) statistical properties. Closely related to (ii) is a requirement in modelling 
applications that the fixed-N convolution (15) should not introduce an additional 
parameter into the theory. This can be achieved by choosing any discrete compound 
Poisson distribution for the number fluctuations (Feller 1968) leading to a generalised 
form of equation (21): 

c N ( u )  = exp[-Zi(l- ( ~ o ( u a / J R ) ~ ) l ,  (49) 

Here the bar indicates averaging over the fluctuations in n, and A? is a parameter which 
scales under the convolution (15), i.e. it? + NG.  Formula (49) reduces to the negative 
binomial result (21) when n is logarithmically distributed: p ( n )  = q"/n ln[l/(l-q)]. 
However it is not easy to find other examples based on (49) which also satisfy 
requirement (i) above. By contrast it is easy to construct models satisfying requirement 
(i) if the 'no additional parameter' constraint is relaxed. Thus the uniform distribution 
p ( N )  = (R + l)-' for N c R gives in place of (22) 
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corresponding to the exponential-integral limit distribution 

with normalised intensity moments 

where 

El(x)  = Ixm 5 dy. (53) 

The single parameter (A2)  characterising (51) clearly does not scale under the con- 
volution (15), which consequently introduces N as a second parameter. Moreover, 
further assumptions are needed before high-order (joint) statistical properties can be 
calculated and requirement (iii) above satisfied. 

Turning now to the question of the relevance of K-distributed noise to physical 
systems, it is evident that the limit distributions generated by negative binomial number 
fluctuations in the two-dimensional random walk problem provide an accurate model 
for the single-interval statistics of radiation scattered by a range of systems involving 
turbulent media. Although the random walk problem occurs widely throughout physics 
(and indeed in many other branches of science), so that K distributions may well prove 
useful in other fields, it is the experimental data from these turbulent scattering systems 
which have motivated the present work and it is the bunching of scattering centres in 
space and time which is held to be responsible for the particular statistics of the 
scattered radiation. Unfortunately, presently available experimental data do not 
adequately test the negative binomial model, but the bunching of scatterers in multi- 
scale systems is an intuitively reasonable hypothesis: both the modulation of small 
wavelets on the sea surface by an underlying larger-scale structure and intermittancy in 
turbulently mixing systems would undoubtedly lead to clustering of scattering centres. 
It is significant in this context that fluctuations in light scattered by specially designed 
single-scale surfaces are typically not K-distributed according to recent experimental 
evidence (Parry and Gray 1979). The population process defined by equation (3) is, of 
course, by no means the only model for number fluctuations (although it may be the 
simplest one satisfying requirements (i)-(iii) above). It does appear to be consistent, 
however, with a picture of turbulence in which large eddies are ‘spontaneously created’ 
and then ‘give birth’ to generations of smaller daughter eddies through a cascade 
process which terminates when the smallest eddies ‘die’ due to viscous dissipation. 
According to 0 3 the size of the eddies (step length or scattering power) would not affect 
the limit distribution of the amplitude of scattered radiation so that the rate equation ( 3 )  
would completely characterise the scattering process (apart from spatial effects 
mentioned in § 4) in the limit of high population levels. 

To summarise, it has been shown in this paper that negative binomial fluctuations in 
the number of steps in a two-dimensional random walk lead to a new class of limit 
distributions, the K distributions, which appears to provide a good model for the 
single-interval statistics of radiation scattered from turbulent media. A simple popu- 
lation model reminiscent of the cascade description of turbulence has been used to 
generate higher-order joint statistical properties but no attempt has been made to 
justify the model through a rigorous mathematical formulation of the scattering 
problem. Some progresi on this front is reported elsewhere (Hoenders et a1 1979). It 
has been demonstrated that every compound Poisson distribution of step number 
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fluctuations generates a class of infinitely divisible limit distributions. The negative 
binomial model appears to be the simplest example of physical interest for which the 
random walk problem can be solved in terms of tabulated functions. 
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